Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.335
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673732

ABSTRACT

Adipose tissue is an active endocrine gland, synthesizing and secreting multiple signaling molecules termed adipokines. Following the detection of adipokines and their receptors in the mammary tissue of various species, it is indicated that adipokines play a role in the development of the mammary gland. The aim of the present study was to determine the concentration-dependent influence of three adipokines, leptin, adiponectin, and chemerin, on the viability, apoptosis, and secretory activity of BME-UV1 bovine mammary epithelial cells. The study confirmed that BME-UV1 cells contain the leptin receptor (Ob-R) protein, and express transcripts of adiponectin (ADIPOR1 and ADIPOR2) and chemerin (CMLKR1 and GPR1) receptors. Regardless of the administered dose, none of the three tested adipokines had an effect on the viability of BME-UV1 cells, and the number of apoptotic cells remained unchanged. However, chemerin (100 ng/mL) stimulated BME-UV1 cells to synthesize and secrete αS1-casein, the major protein component of milk. These results indicate that chemerin may be a potent regulator of the bovine mammary epithelial cells' functional differentiation, contributing, along with the major systemic hormones and local growth factors, to the development of the bovine mammary gland.


Subject(s)
Apoptosis , Chemokines , Epithelial Cells , Mammary Glands, Animal , Animals , Cattle , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Chemokines/metabolism , Female , Cell Survival/drug effects , Cell Line , Receptors, Adiponectin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Caseins/metabolism , Adiponectin/metabolism
2.
Genes (Basel) ; 15(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674417

ABSTRACT

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.


Subject(s)
Adiponectin , Polycystic Kidney, Autosomal Dominant , Polymorphism, Single Nucleotide , Receptors, Adiponectin , Humans , Adiponectin/genetics , Adiponectin/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Female , Male , Receptors, Adiponectin/genetics , Middle Aged , Adult , PPAR gamma/genetics , PPAR gamma/metabolism
3.
Biomed Pharmacother ; 174: 116589, 2024 May.
Article in English | MEDLINE | ID: mdl-38636400

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFß/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Isoflavones , Animals , Mice , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Fibrosis/drug therapy , Isoflavones/pharmacology , Isoflavones/therapeutic use , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Receptors, Adiponectin/drug effects , Receptors, Adiponectin/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Streptozocin
4.
Prostaglandins Other Lipid Mediat ; 172: 106824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438104

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to joint destruction. Numerous pro-inflammatory mediators, including adipokines, play an important role in the pathogenesis of RA. OBJECTIVE: The aim of the study was to investigate the relationships between selected plasma cytokines and expression of adiponectin and its receptors in the synovium and the infrapatellar fat pad in patients with RA and osteoarthritis (OA). METHODS: Blood, synovium and fat pad samples from 18 patients with RA and 18 with OA were collected during joint replacement surgery. Spearman rank correlations between plasma concentrations of selected cytokines (IL-1ß, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 p40, IL-13, IL-17, G-CSF and GM-CSF) and the expression of adiponectin and its receptors were determined. Plasma levels of cytokines were determined using a magnetic bead-based multiplex assay, mRNA expression of adiponectin and its receptors were determined by real-time PCR. RESULTS: In OA patients, there were significant positive correlations between adiponectin expression in the synovial membrane and plasma levels of IL-1ß, IL-4, G-CSF and GM-CSF, as well as a significant positive correlation between adiponectin expression in the fat pad and plasma levels of GM-CSF. In addition, OA patients showed significant negative correlations between AdipoR1 and AdipoR2 expression in the synovial membrane and plasma IL-6 levels, as well as between AdipoR2 expression in the synovial membrane and plasma MCP-1 and TNF-α levels. In patients with RA, there were no significant correlations between adiponectin expression in the synovial membrane and infrapatellar fat pad and plasma levels of the cytokines studied. In addition, RA patients showed a statistically significant negative correlation between AdipoR1 expression in the synovial membrane and plasma levels of TNF-α, IL-7, IL-12 and IL-13, and a significant negative correlation between AdipoR1 expression in the infrapatellar fat pad and plasma levels of IL-1ß. CONCLUSIONS: Adiponectin and its receptors showed the correlations with several plasma cytokines, however, a thorough understanding of the role of adiponectin in RA and OA requires further investigation.


Subject(s)
Adiponectin , Adipose Tissue , Arthritis, Rheumatoid , Cytokines , Receptors, Adiponectin , Synovial Membrane , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/metabolism , Synovial Membrane/metabolism , Adiponectin/blood , Adiponectin/metabolism , Male , Female , Cytokines/blood , Cytokines/metabolism , Adipose Tissue/metabolism , Aged , Middle Aged , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Osteoarthritis/blood , Osteoarthritis/metabolism
5.
Int Immunopharmacol ; 132: 111890, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38547772

ABSTRACT

The diverse beneficial effects of adiponectin-receptor signaling, including its impact on the regulation of inflammatory processes in vivo, have resulted in development of adiponectin receptor agonists as a treatment for metabolic disorders. However, there are no established non-invasive bioassays for detection of adiponectin target engagement in humans or animal models. Here, we designed an assay using small amounts of blood to assess adiponectin action. Specifically, we tested effects of the small 10-amino acid peptide adiponectin receptor agonist, ALY688, in a sublethal LPS endotoxemia model in mice. LPS-induced pro-inflammatory cytokine levels in serum were significantly reduced in mice treated with ALY688, assessed via multiplex ELISA in flow cytometry. Furthermore, ALY688 alone significantly induced TGF-ß release in serum 1 h after treatment and was elevated for up to 24 h. Additionally, using a flow-cytometry panel for detection of changes in circulating immune cell phenotypes, we observed a significant increase in absolute T cell counts in mice after ALY688 treatment. To assess changes in intracellular signaling effectors downstream of adiponectin, phospho-flow cytometry was conducted. There was a significant increase in phosphorylation of AMPK and p38-MAPK in mice after ALY688 treatment. We then used human donor immune cells (PBMCs) treated with ALY688 ex vivo and observed elevation of AMPK and p38-MAPK phosphorylation from baseline in response to ALY688. Together, these results indicate we can detect adiponectin action on immune cells in vivo by assessing adiponectin signaling pathway for AMPK and p38-MAPK, as well as pro-inflammatory cytokine levels. This new approach provides a blood-based bioassay for screening adiponectin action.


Subject(s)
Adiponectin , Cytokines , Lipopolysaccharides , Mice, Inbred C57BL , Signal Transduction , Animals , Adiponectin/blood , Adiponectin/metabolism , Humans , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , Mice , Male , Cytokines/metabolism , Cytokines/blood , Biological Assay/methods , Endotoxemia/immunology , Endotoxemia/metabolism , Receptors, Adiponectin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Disease Models, Animal , Female
6.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38348774

ABSTRACT

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Subject(s)
Adiponectin , Endothelial Progenitor Cells , Glycoproteins , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Progenitor Cells/metabolism , Complement C1q/metabolism , Complement C1q/pharmacology , AMP-Activated Protein Kinases/metabolism , Cytokines/metabolism , Nitric Oxide Synthase Type III/metabolism , Mice, Nude , Receptors, Adiponectin/metabolism , Nitrites , Cell Movement , Glucose/pharmacology , Glucose/metabolism , Cadherins/metabolism , Tumor Necrosis Factors/metabolism , Tumor Necrosis Factors/pharmacology , Nitric Oxide/metabolism , Cells, Cultured
8.
Cell Biochem Funct ; 42(1): e3910, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269524

ABSTRACT

Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , AMP-Activated Protein Kinases , Adiponectin , Peroxisome Proliferator-Activated Receptors , Receptors, Adiponectin , Obesity/drug therapy
9.
J Transl Med ; 22(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166990

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS: By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS: This provides a new target for the early treatment of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , AMP-Activated Protein Kinases/metabolism , Diabetic Retinopathy/drug therapy , Early Growth Response Transcription Factors/metabolism , Glucose , Phosphorylation , Receptors, Adiponectin/metabolism , Animals , Mice
10.
Biomed Pharmacother ; 171: 116119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181714

ABSTRACT

AIMS: Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS: Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1ß, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1ß, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION: These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.


Subject(s)
Heart Failure , Humans , Mice , Animals , Heart Failure/metabolism , Adiponectin/metabolism , Receptors, Adiponectin/metabolism , Stroke Volume , Myocytes, Cardiac , Fibrosis , Ventricular Remodeling , Mice, Inbred C57BL
11.
J Bacteriol ; 206(1): e0039723, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38054739

ABSTRACT

Members of the widely conserved progestin and adipoQ receptor (PAQR) family function to maintain membrane homeostasis: membrane fluidity and fatty acid composition in eukaryotes and membrane energetics and fatty acid composition in bacteria. All PAQRs consist of a core seven transmembrane domain structure and five conserved amino acids (three histidines, one serine, and one aspartic acid) predicted to form a hydrolase-like catalytic site. PAQR homologs in Bacteria (called TrhA, for transmembrane homeostasis protein A) maintain homeostasis of membrane charge gradients, like the membrane potential and proton gradient that comprise the proton motive force, but their molecular mechanisms are not yet understood. Here, we show that TrhA in Escherichia coli has a periplasmic C-terminus, which places the five conserved residues shared by all PAQRs at the cytoplasmic interface of the membrane. Here, we characterize several conserved residues predicted to form an active site by site-directed mutagenesis. We also identify a specific role for TrhA in modulating unsaturated fatty acid biosynthesis with conserved residues required to either promote or reduce the abundance of unsaturated fatty acids. We also identify distinct roles for the conserved residues in supporting TrhA's role in maintaining membrane energetics homeostasis that suggest that both functions are intertwined and probably partly dependent on one another. An analysis of domain architecture of TrhA-like domains in Bacteria further supports a function of TrhA linking membrane energetics homeostasis with biosynthesis of unsaturated fatty acid in the membrane. IMPORTANCE Progestin and adipoQ receptor (PAQR) family proteins are evolutionary conserved regulators of membrane homeostasis and have been best characterized in eukaryotes. Bacterial PAQR homologs, named TrhA (transmembrane homeostasis protein A), regulate membrane energetics homeostasis through an unknown mechanism. Here, we present evidence linking TrhA to both membrane energetics homeostasis and unsaturated fatty acid biosynthesis. Analysis of domain architecture together with experimental evidence suggests a model where TrhA activity on unsaturated fatty acid biosynthesis is regulated by changes in membrane energetics to dynamically adjust membrane homeostasis.


Subject(s)
Progestins , Receptors, Adiponectin , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Steroids , Fatty Acids/metabolism , Homeostasis , Fatty Acids, Unsaturated , Bacteria/metabolism
12.
mBio ; 15(1): e0225723, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38078744

ABSTRACT

IMPORTANCE: When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Female , Humans , Adiponectin , Anopheles/physiology , Mosquito Vectors , Plasmodium falciparum , Receptors, Adiponectin
13.
Hematol Oncol ; 42(1): e3219, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690092

ABSTRACT

Progesterone and adiponectin receptor 3 (PAQR3) has been found to regulate tumor progression by mediating cell ferroptosis. However, whether PAQR3 mediates ferroptosis in diffuse large B-cell lymphoma (DLBCL) needs further investigation. The mRNA and protein levels of PAQR3 and low-density lipoprotein receptor (LDLR) were assessed by qRT-PCR and WB assays. Cell proliferation was detected by MTT assay and EdU assay. Shrunken mitochondria was counted under transmission electron microscope. Cell ferroptosis was evaluated by measuring the levels of malondialdehyde, reactive oxygen species, glutathione, Fe2+ , and the protein expression of ferroptosis-related markers. PAQR3 and LDLR interaction was confirmed by RIP assay and pull-down assay. Our study showed that PAQR3 was underexpressed, while LDLR was overexpressed in DLBCL tissues and cells. Functionally, PAQR3 overexpression or LDLR knockdown restrained DLBCL cell proliferation and enhanced ferroptosis. Mechanistically, PAQR3 reduced LDLR expression by inhibiting its mRNA stability. Meanwhile, LDLR overexpression reversed PAQR3-mediated the promoting on DLBCL cell ferroptosis, and LY294002 (PI3K/AKT inhibitor) eliminated the inhibiting effects of LDLR overexpression on DLBCL cell ferroptosis. Additionally, excessive PAQR3 reduced DLBCL tumor growth by enhancing tumor cell ferroptosis through LDLR-mediated PI3K/AKT pathway. In conclusion, our data suggested that PAQR3 restrained DLBCL progression by aggravating ferroptosis, which was achieved by inhibiting LDLR expression to repress PI3K/AKT pathway.


Subject(s)
Ferroptosis , Lymphoma, Large B-Cell, Diffuse , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Progesterone , Receptors, Adiponectin , Lymphoma, Large B-Cell, Diffuse/pathology , Cell Line, Tumor , Cell Proliferation
14.
Am J Physiol Cell Physiol ; 326(4): C1011-C1026, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38145301

ABSTRACT

Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analog, ALY688-SR, remodels the diaphragm of murine model of DMD on DBA background (D2.mdx) mice treated from days 7-28 of age during early stages of disease. ALY688-SR also lowered interleukin-6 (IL-6) mRNA but increased IL-6 and transforming growth factor-ß1 (TGF-ß1) protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H2O2 emission. Treatment also attenuated fibrosis, fiber type-specific atrophy, and in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling, and force-generating properties during the very early stages of disease progression in murine model of DMD on DBA background (D2.mdx) mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR in young D2.mdx mice partially prevents fibrosis and fiber type-specific atrophy and lowers force production in the more disease-apparent diaphragm in relation to lower mitochondrial redox stress and heterogeneous responses in certain inflammatory markers. These diverse muscle responses to adiponectin receptor agonism in early stages of DMD serve as a foundation for further mechanistic investigations.NEW & NOTEWORTHY There are limited therapies for the treatment of Duchenne muscular dystrophy. As fibrosis involves an accumulation of collagen that replaces muscle fibers, antifibrotics may help preserve muscle function. We report that the novel adiponectin receptor agonist ALY688-SR prevents fibrosis in the diaphragm of D2.mdx mice with short-term treatment early in disease progression. These responses were related to altered inflammation and mitochondrial functions and serve as a foundation for the development of this class of therapy.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Adiponectin/genetics , Disease Models, Animal , Interleukin-6/metabolism , Mice, Inbred C57BL , Hydrogen Peroxide/metabolism , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Mice, Inbred DBA , Muscle, Skeletal/metabolism , Diaphragm/metabolism , Fibrosis , Inflammation/metabolism , Disease Progression , Atrophy/metabolism , Atrophy/pathology
15.
Mol Med Rep ; 29(2)2024 02.
Article in English | MEDLINE | ID: mdl-38063230

ABSTRACT

Salusin­ß and adiponectin receptor 1 (adipoR1) serve important roles in the development of certain cardiovascular diseases and lipid metabolism. However, to the best of our knowledge, the relationship between salusin­ß and adipoR1, and their underlying mechanisms of action, currently remain unclear. In the present study, lentiviral vectors designed to overexpress salusin­ß or knock down salusin­ß expression were used in 293T and HepG2 cells. Semi­quantitative PCR was performed to investigate the relationship between salusin­ß and adipoR1 mRNA expression in 293T cells. Western blotting was used to assess the protein expression levels of adipoR1, adenosine monophosphate­activated protein kinase (AMPK), acetyl­CoA carboxylase (ACC) and carnitine palmitoyl transferase 1A (CPT­1A) in transfected HepG2 cells. Simultaneously, HepG2 cells were treated with an adipoR1 inhibitor (thapsigargin) or agonist (AdipoRon) and the resultant changes in the expression levels of the aforementioned proteins were observed. Oil Red O staining and measurements of cellular triglyceride levels were performed to assess the extent of lipid accumulation in HepG2 cells. The results demonstrated that salusin­ß overexpression downregulated adipoR1 expression and inhibited the phosphorylation of AMPK and ACC, which led to decreased CPT­1A protein expression. By contrast, salusin­ß knockdown increased adipoR1 expression and promoted the phosphorylation of AMPK and ACC, which conversely enhanced CPT­1A protein expression. Treatment with adipoR1 agonist, AdipoRon, reversed the effects of salusin­ß overexpression. In addition, salusin­ß overexpression enhanced intracellular lipid accumulation in HepG2 cells induced by free fatty acid treatment. These findings highlighted the potential regulatory role of salusin­ß in adipoR1­mediated signaling pathways. To conclude, the present study provided insights into the regulation of fatty acid metabolism by the liver. In particular, salusin­ß may serve as a potential target for the therapeutic intervention of metabolic disorders of lipids.


Subject(s)
AMP-Activated Protein Kinases , Lipid Metabolism , Receptors, Adiponectin , Humans , AMP-Activated Protein Kinases/metabolism , Fatty Acids, Nonesterified/metabolism , Hep G2 Cells , Liver/metabolism , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism
16.
Biochem Biophys Res Commun ; 694: 149406, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38134479

ABSTRACT

The endocrine function of white adipose tissue is characterized by the synthesis of one its main hormones: adiponectin. Although the biological role of adiponectin has not been fully defined, clinical and experimental observations have shown that low plasma concentrations of adiponectin participate in the prevalence of insulin resistance and cardiovascular diseases, mainly in obese patients. Adiponectin also exerts its effects on the heart and blood vessels, thereby influencing their physiology. Studying the effects of adiponectin presents some complexities, primarily due to potential cross-interactions and interference with other pathways, such as the AdipoR1/R2 pathways. Under optimal conditions, the activation of the adiponectin cascade may involve signals such as AMPK and PPARα. Interestingly, these pathways may trigger similar responses, such as fatty acid oxidation. Understanding the downstream effectors of these pathways is crucial to comprehend the extent to which adiponectin signaling impacts metabolism. In this review, the aim is to explore the current mechanisms that regulate the adiponectin pathways. Additionally, updates on the major downstream factors involved in adiponectin signaling are provided, specifically in relation to metabolic syndrome and atherosclerosis.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Metabolic Syndrome , Humans , Adiponectin/metabolism , Obesity/metabolism , Receptors, Adiponectin/metabolism
17.
Biochem Pharmacol ; 218: 115871, 2023 12.
Article in English | MEDLINE | ID: mdl-37866803

ABSTRACT

Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Adiponectin/metabolism , Adiponectin
18.
Sci Rep ; 13(1): 16267, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758935

ABSTRACT

Adipokines dysregulation, the main reason for cognitive impairments (CI) induced by diabetes, shows a sex-dependent pattern inherently and in response to exercise. This study aimed to compare the attenuating effect of 8-week high intensity-interval training (HIIT) on type 2 diabetes (T2D)-induced CI between male and female rats with a special focus on adiponectin and leptin. 28 male & 28 female Wistar rats with an average age of 8 weeks were randomly assigned into four groups: control (Con), exercise (EX), Diabetes (T2D), and Type 2 diabetes + exercise (T2D + Ex). Rats in EX and T2D + EX groups performed HIIT for eight weeks (80-100% Vmax, 4-10 intervals). T2D was induced by 2 months of a high-fat diet and a single dose of STZ (35 mg/kg) administration. Leptin and adiponectin levels in serum were measured along with hippocampal expression of leptin and adiponectin receptors, AMP-activated protein kinase (AMPK), dephosphorylated glycogen synthase kinase-3 beta (Dep-GSK3ß), Tau, and beta-amyloid (Aß). Homeostasis model assessments (HOMAs) and quantitative insulin-sensitivity check index (QUICKI) indices were calculated. Our results showed that following T2D, serum levels of APN, and hippocampal levels of adiponectin receptor 1 (APNR1) were higher and HOMA-IR was lower in female than male rats (P < 0.05). However, after 8 weeks of HIIT, hippocampal levels of APNR1 and AMPK as well as QUICKI were lower and hippocampal levels of GSK, Tau, and Aß were higher in females compared to male rats (P < 0.05). While the risk of CI following T2D was more in male than female rats HIIT showed a more ameliorating effect in male animals with APN1 as the main player.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Female , Male , Rats , Adiponectin , AMP-Activated Protein Kinases , Cognition , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Leptin , Rats, Wistar , Receptors, Adiponectin , Sex Characteristics
19.
Mol Biol (Mosk) ; 57(4): 623-631, 2023.
Article in Russian | MEDLINE | ID: mdl-37528782

ABSTRACT

Atherosclerosis is characterized by excessive uptake of cholesterol-rich low-density lipoprotein (LDL) by vascular wall macrophages. The macrophages are transformed into foam cells, lipids accumulate in the intima of arteries, atherosclerotic plaques arise, and cardiovascular diseases develop. Adiponectin is an adipose tissue adipokine and possess anti-atherogenic and anti-inflammatory activities, which are mediated by adiponectin binding to its receptors AdipoR1 and AdipoR2. To exert its anti-atherogenic effect, adiponectin may regulate the reverse cholesterol transport and prevent foam cells formation. The small-molecule adiponectin receptor agonist AdipoRon was assumed to modulate expression of reverse cholesterol transport and inflammation genes in human macrophages. Several AdipoRon concentrations (0, 5, 10, and 20 µM) were tested for effect on expression of the lipid metabolism genes ABCA1, ABCG1, APOA1, NR1H3 (LXRα), NR1H2 (LXRß), PPARG, and ACAT1 and the inflammation genes IL6, TNFA, and TLR4 in cultured human primary macrophages and the THP-1 macrophage cell line. Cell viability was measured using the MTS assay. ABCA1, ABCG1, APOA1, NR1H3, NR1H2, PPARG, ACAT1, IL6, TNFA, and TLR4 mRNA levels in human primary macrophages were assessed by real-time PCR. The PPARG and ABCA1 relative mRNA levels were found to increase in human primary macrophages treated with 5 or 10 µM AdipoRon for 24 h. A higher AdipoRon concentration (20 µM) was cytotoxic to macrophages, especially THP-1 cells. The effect of AdipoRon on human macrophages and potential adiponectin receptor agonists are of interest to study in view of the need to develop new approaches to atherosclerosis prevention and treatment.


Subject(s)
Atherosclerosis , Lipid Metabolism , Humans , Lipid Metabolism/genetics , Adiponectin , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , PPAR gamma , Interleukin-6/metabolism , Toll-Like Receptor 4/metabolism , Macrophages/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Carrier Proteins/metabolism , Inflammation/metabolism , RNA, Messenger/metabolism , ATP Binding Cassette Transporter 1/genetics
20.
Cells ; 12(16)2023 08 19.
Article in English | MEDLINE | ID: mdl-37626911

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most devastating myopathies, where severe inflammation exacerbates disease progression. Previously, we demonstrated that adiponectin (ApN), a hormone with powerful pleiotropic effects, can efficiently improve the dystrophic phenotype. However, its practical therapeutic application is limited. In this study, we investigated ALY688, a small peptide ApN receptor agonist, as a potential novel treatment for DMD. Four-week-old mdx mice were subcutaneously treated for two months with ALY688 and then compared to untreated mdx and wild-type mice. In vivo and ex vivo tests were performed to assess muscle function and pathophysiology. Additionally, in vitro tests were conducted on human DMD myotubes. Our results showed that ALY688 significantly improved the physical performance of mice and exerted potent anti-inflammatory, anti-oxidative and anti-fibrotic actions on the dystrophic muscle. Additionally, ALY688 hampered myonecrosis, partly mediated by necroptosis, and enhanced the myogenic program. Some of these effects were also recapitulated in human DMD myotubes. ALY688's protective and beneficial properties were mainly mediated by the AMPK-PGC-1α axis, which led to suppression of NF-κß and TGF-ß. Our results demonstrate that an ApN mimic may be a promising and effective therapeutic prospect for a better management of DMD.


Subject(s)
Adiponectin , Receptors, Adiponectin , Humans , Animals , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL
...